Forum matematică


Integrale

Claudia
2015-11-14 12:52:46
Post #1  
Vizitator

 


integrala din x4+4 supra x2+1

 

 

 

  ^ Sus
Aramis
2015-11-16 22:18:40
Post #2  
Vizitator

 


Vei  aduna  si  scadea 2x2la  numarator  si  vei  obtine


 


F(x)=∫[(x2+1)2]/(x2+1)dx-∫(2x2-3)/(x2+1)dx


Vei  nota  prima  integrala  cu  F1(x) si  a  2-a integrala  cu F2(x)


F1(x)=∫(x2+1)dx=x3/3+x+c1


F2(x)=∫(2x2-3)dx=∫(2x2+2)/(x2+1)dx-5∫dx/(x2+1)=2∫dx-5arctgx=2x-5arctgx


F(x)=F1(x)-F2(x)


 


intrebari?

  ^ Sus
Claudia
2015-11-16 22:29:55
Post #3  
Vizitator

 


pai de ce am F1(x) si F2(x) nu trebuie sa raman cu un rezultat simplus +constanta? :)))

  ^ Sus
Claudia
2015-11-16 22:37:08
Post #4  
Vizitator

 


nu am inteles-o deloc..

  ^ Sus
Popa Ilie
2017-03-11 00:00:55
Post #5  
Vizitator

 


\int \frac{x^{4}-1+5}{x^{2}+1}dx = \int \frac{(x^{2}-1)(x^{2}+1)+5}{x^{2}+1}dx=


=\int \frac{5}{x^{2}+1}dx + \int (x^{2}-1)dx=5\int \frac{1}{x^{2}+1}dx + \int (x^{2}-1)dx=


=5 \cdot \arctan (x) + \frac{x^{3}}{3} -x 

  ^ Sus
  Răspunde | Subiect Nou

 

Forum

Ai nevoie de ajutor la matematica? Pune o întrebare!

la Aritmetica

la Algebra

la Geometrie

despre Examene

sau despre altceva

 
 
 

Noutăţi

Ultimele pagini adăugate

Calculul ariei unui patrulater convex

Teorema transversalei

 

Aplicaţii pe mobil

Descompune în factori primi
Numere Prime

 
 

Daca vreti sa ne dati o idee scrieti-ne la opinii@mateonline.net

Vă mulţumim!'

Site partener:
www.mathematicshelp.org