Forum matematică


cerc circumscris trapezului

Dan Juc
Vizitator
2017-04-29 09:27:25

Determianti lungimile diagonalei si laturii laterale ale unui trapez isoscel cu lungimile bazelor egal cu 20cm si 12 cm, daca se stie ca centrul cercului circumscris trapezului este situat pe baza cea mai mare.

proful
Membru din 2008-11-02
 
Postari: 153
2017-05-01 00:30:41

Avem figura urmatoare:
Trapez isoscel inscris in cerc


Avem aceasta figura. Ne dam imediat seama ca baza mare este agala cu diametrul => r = 20 / 2 = 10 cm

proful
Membru din 2008-11-02
 
Postari: 153
2017-05-01 00:43:45

Ducem OM ⊥ CD => NC = ND = CD / 2 = 12 / 2 = 6 cm


Apoi, avem: OC = OD = r =10cm


Aflam cu Teorema lui Pitagora pe ON


ON = \sqrt{OC^{2}-NC^{2}} = \sqrt{100 - 36} = 8 cm


Apoi, in trapez, mai ducem perpendicularele DD' si CC' pe baze. Avem


 


AD' = C'B = \frac{20-12}{2}=4 cm


In triunghiul CC'B aplicam din nou Teorema lui Pitagora. Si rezulta:


BC = \sqrt{C'B^{2}+C'C^{2}}=\sqrt{80}=4\sqrt{5} cm


Si astfel am gasit marimea laturilor neparalele

proful
Membru din 2008-11-02
 
Postari: 153
2017-05-01 00:49:54

Pentru a afla lungimile diagonalelor aplici din nou Teorema lui Pitagora, de data aceasta in triunghiul ABC', unde stii


AC' = 4 + 12 = 16 cm


CC' = 8 cm


 


Succes!

  ^ Sus
  Răspunde | Subiect Nou

 

Forum

...
 

Noutăţi

 

Daca vreti sa ne dati o idee scrieti-ne la opinii@mateonline.net

Vă mulţumim!'